
Asthma in Icehockey Is it Under Diagnosed?

Dr. med. B. Villiger CEO, Schweizer Paraplegiker Zentrum Nottwil

Asthma bronchiale Mechanism

3 Key Questions:

Respiratory Symptoms in Hockey Players: Are they caused by Asthma Bronchiale?

Is the exercise-induced Bronchoconstriction (EIB) of the Ice-Hockey Player an special form of Asthma Bronchiale?

Ice-Hockey: does it make asthmatic?

Increased Prevalence of exercise-induced Bronchoconstriction in Elite Sports?

Fact or Fiction?
Doping-induced?

Prävalence (age 18-40)

BHR

Asthma

Sapaldia (Switzerland 1992/2002)

18%

8%

Does the Prevalence of Asthma depend on the Type of

Sports?

Winter vs. Summer?
Individual vs. Team?
Endurance vs. Power?
Indoor vs. Outdoor?

Beat Villiger: 1. Sports Medicine Seminar KHL - Asthma

Risk Factors for Exercise-Induced Bronchoconstriction (AIB)

"regular" Asthma bronchiale

untreated:

Children 80 – 100 %

Adult 70 – 80 % (Lab)

45 - 73 % (Field)

inhaled Corticosteroids ICS < 50 %

Atopics without Asthma

during Pollen Season > 50 %

No. pos. Skintest
Strong Correlation with Severety of EIB

"Sports" Asthma (Meyers 2006)

total - 55 % (peer reviewed)

no Hx of Asthma/BHR/Allergy - 35 %

How many Athletes of the Swiss Olympic Delegation at the OG in Torino 2006 suffered from "Asthma"?

- a) Reversible Obstruction / positive Exercise -Test / positive Methacholine -Test (PD20: < 250 ug MC !!!)
- b) Typical Symptoms
 - 1. 10/130
 - **2.** 16/130
 - **3. 22/130**
 - 4. 28/130

- **1. 10/130**
- **2.** 16/130
- **3. 22/130**
- **4. 28/130**

- **= 22 % !!**
- = Faktor 2,7 (Sapaldia)

Prevalence of Asthma in Icehockey

Leuppi JD: Eur Resp J 1998
 19 %

Lumme A: Eur: Resp J 2003 15% / 22 %

Wilber RL: Med Sci Sports Exerc 2000 23 %

Haatela T: Eur Resp Mon 2006

Winter Sports

Cross country 14-55% Icehockey 15-23%

Summersports

Swimmers 13-44%
Long distance runners 15-24%
Track & Field 16%

Lumme A.: Asthma in Icehockey Players Eur Resp Journal, 2003, 22: 113-117

Table 2. – Occurrence of atopy, increased bronchial responsiveness, current asthma and total asthma

Characteristic	Ice hockey players	Control subjects	p-value#
Subjects n Atopy Increased bronchial responsiveness	88 51 (58) 21 (24)	47 17 (36) 5 (11)	0.025 0.097
Current asthma Total asthma	13 (15) 19 (22)	1 (2) 2 (4)	0.033 0.011

Data are presented as n (%) unless otherwise stated. #: Fisher's exact test.

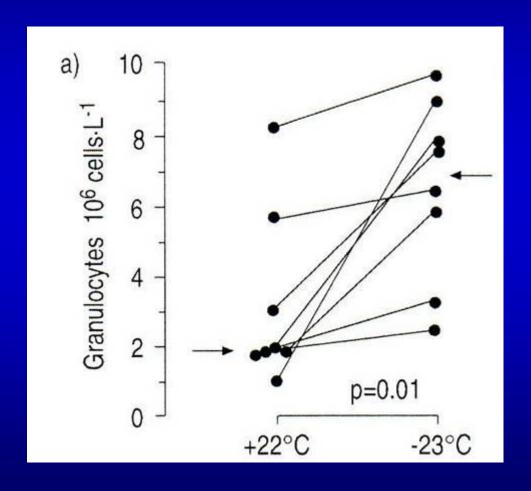
EIB: Risk Factor "Cold Air"?

Larsson 1993: Cross Country (Winter) vs. Endurance (Summer)

BHR 54% 8% Asthma 32% 5%

Villiger 1996: Cross Country (Winter) vs. Sapaldia (CH)

BHR 31% 18%


Asthma 15% 8%

Leuppi 1998: Floor - Hockey vs. Ice – Hockey (CH)
Asthma 4.2% 19.2%

Inhalation of cold air increases the number of inflammatory cells in the lungs in healthy subjects

K. Larsson et al, ERJ 1998, 12, 825-830

Prevalance of asthma in young cross country skiers in central Scandinavia: Differences between Norway and Sweden

Sue-Chu M., Resp. Med, 90: 99 (1996)

171 Skiers	(N = 118, S = 53)		
	N	S	
Asthma rel. Symptoms	36%	51%	
BHR	14%	43%	p < 0,001
Asthma	12%	42%	p < 0,001
Selfreported allergy	31%	32%	

Evidence of Airway Inflammation and Remodeling in Ski Athletes with/without BHR

Karjalainen E.M. et al, AJRCCM 161, 2086, 2000

	<u>T-Ly</u>	Macro	Eos	Mast	Neutro
Controls	12	4	10	50	3
Skier-Asthma	521	105	51	65	63
Asthmatics	853	253	81)	164	31
	Contro	ols	Asthmat	ics S	<u>Skiers</u>
"BM-Remodeling" µm	0,8		8,8		6,7

Comparison of Sputum Differential Cell Counts between Icehockey Players and Control Subjects Lumme A. et al, Eur Respi J 2003

Ic	ehockey	Controls		
Total Cell	5.1	4.6	ns	
Eosinophils	2.6	0.2	0.03	
Neutrophiles	80.9	29.9	0.001	
Lymphocyten	0.5	0.6	ns	
Macrophagen	15.8	66.2	0.001	

Risk-Factor Cold Air ???

M. Davies et al, J Appl Physiol 2005

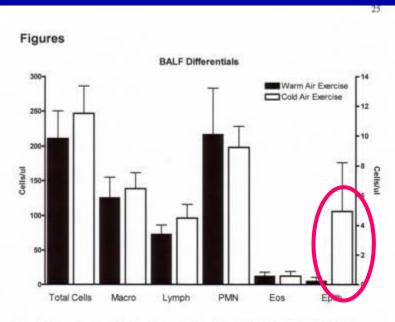
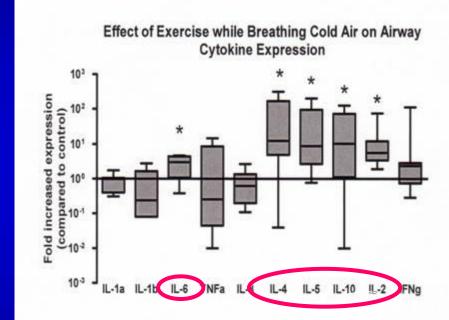
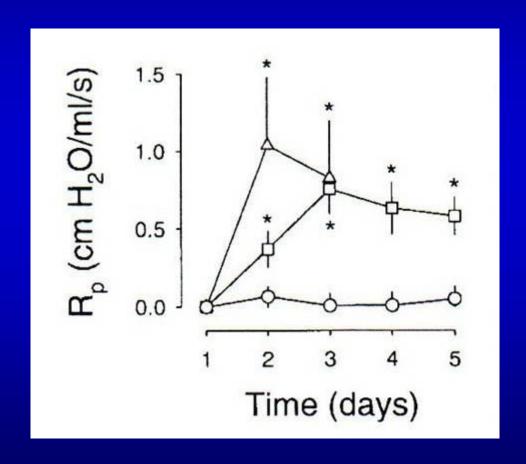
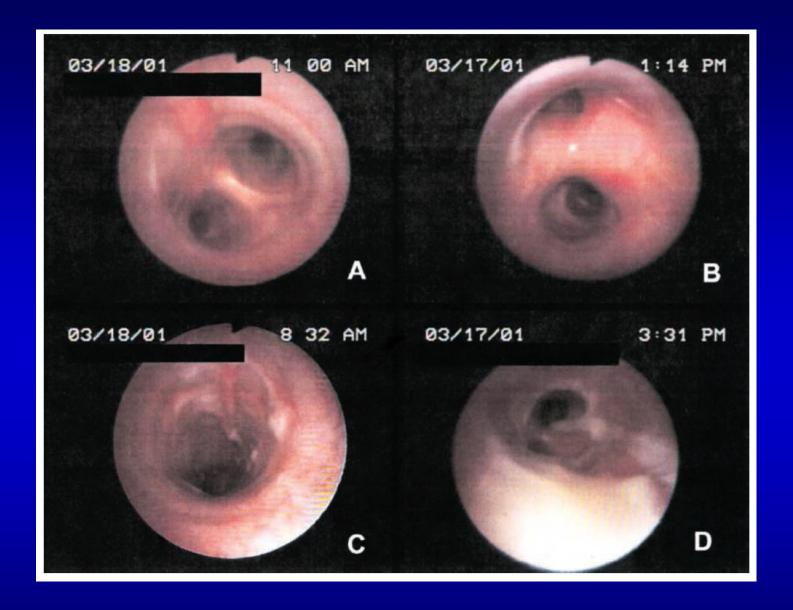


Figure 1: Airway Nucleated Cells after Exercise while Breathing Cold Air. Total Cells - Total BALF Nucleated Cell Concentration; Macro - Macrophages; Lymph - Lymphocytes; PMN - Neutrophils; Eos - Eosinophils; Epith - Epithelial cells. PMN, Eos, and Epith are plotted against the right Y-axis. Mast cells were rarely found during differential cell counts, and accounted for less than 1% of the overall cells in both groups.

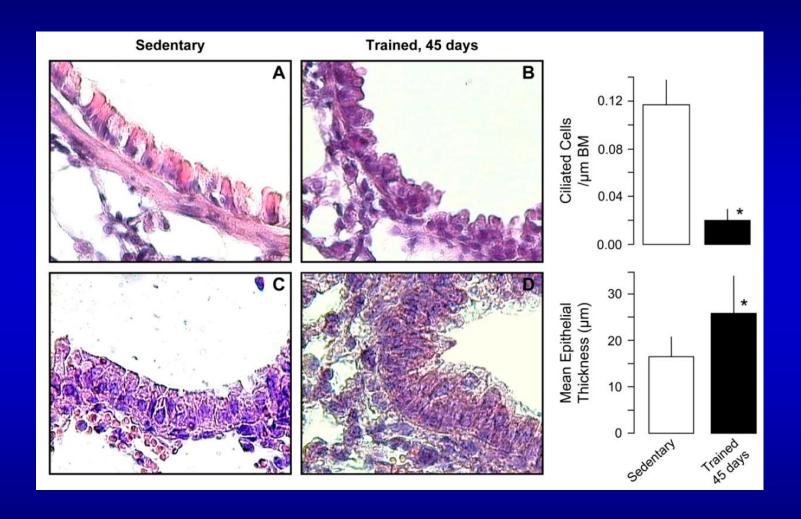



Figure 2: Airway Cytokine mRNA Expression after Exercise while Breathing Cold Air. Data are expressed as the relative (fold) increase of cytokine expression after cold air exercise compared to warm air exercise.
*Significantly different from 1 (relative expression after exercise while breathing syarm air), $\rho < 0.05$.

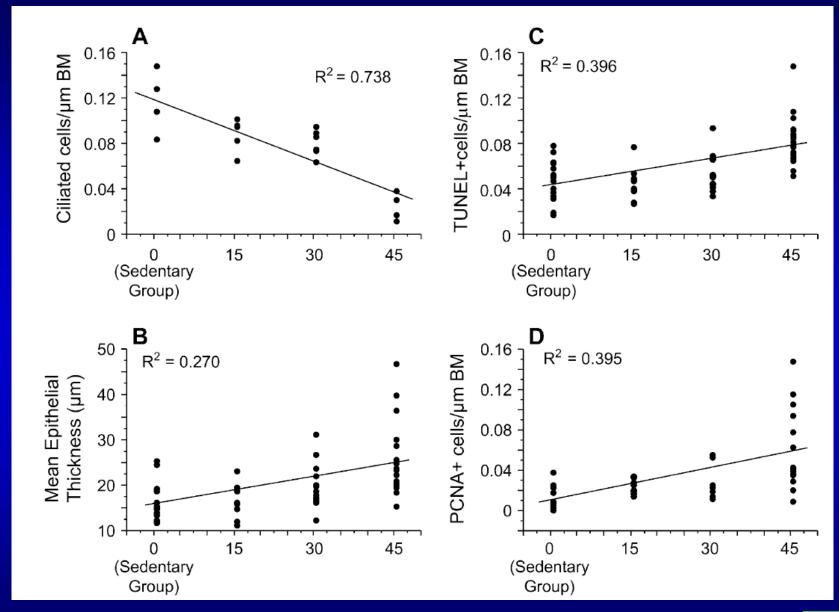

Risk- Factor Hyperventilation ???

Repeated hyperventilation causes peripheral airways inflammation, hyperreactivity, and impaired bronchodilation in dogs

M.S. Davis et al, AJRCCM, 2001, 164:785-789



Davis MS et al: Am J Respir Crit Care Med 2002



Risk - Factor: Duration of Hyperventilation?

Chimeti L et al.: Am J Respir Crit Care Med 2005

Pathogenetic Mechanism

Thermo-osmolar Irritation/Injury by exercise-induced Hyperventilation with cold Air

- ⇒ Heatloss
- ⇒ Dehydration
- ⇒ Reactive Inflammation

- **Direct, Evaporation**
- **↓** Cellvolume, ↑ Osmolarity eosphilic vs. neutrophilic
- Folgen: 1. in pre-existing BHR/ Asthma (↑ eos. inflammation) Mediator Release:

Histamin, Neuropeptide, LT, PG, TNF (lokal & Urin)

- **↑ Permeabilität**
- ↑ Nerve Activity (Vagus)
- ⇒ Bronchoconstriction
- 2. Direct Injury (↑ neutro. Inflammation)
 Mediator Release ? ↑ Permeabilität ?
 ↑ Nerve Activity (Vagus)
- ⇒ Bronchoconstriction

Respiratory Water Loss Humidification and Warming of Cold Air

Mucosal dehydration and direct cooling

Increase in [Na+], [Cl-], [Ca²⁺], [K+]

Increase in osmolarity and direct injury

Airway surface liquid Epithelial Cells Submucosa

Presence of airway inflammation

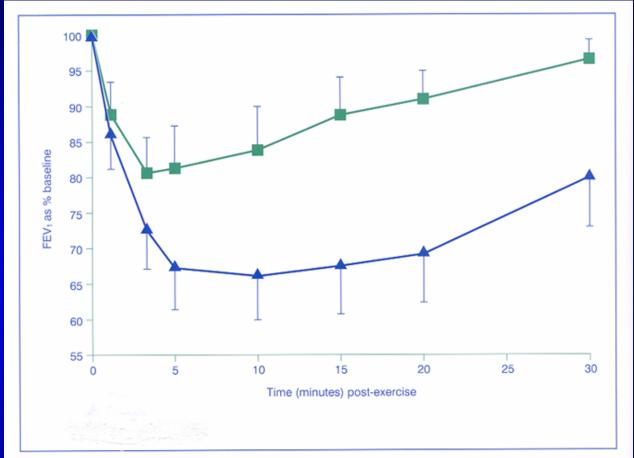
Mediator release from Inflammatory Cells

Bronchial smooth muscle contraction

Prevalence of EIB in Ice – Hockey: 15-22%

Why do we miss so many athletes with EIB in Wintersports??? Report of Swiss-Olympic Medical Team in Torino 2006:

Physician: - Don't know the Symptoms of EIB


- Don't know the Difference of Asthma and EIB
- Look for the wrong Things (rev. Obstruction)
- Think, Athletes would like to dope with Anti-Asthmatic Medication

Athletes:

- Ignorance and wrong Information_
- Symptoms don't correlate with EIB
- Fear from beeing pushed to use Medication
- what do Orthopedic Surgeons know about Asthma?
-I'm a tough Guy!

Start >-----

EIB: Why does'nt it start immediatelly and improves with Time?

Bronchoprotection in EIB

- Immediate Protection
 - \Rightarrow Adrenaline \uparrow (6-8')
- Late Protection
 - ⇒ after 10-20' start of the Refractory Period
 - \Rightarrow PGE₂ \uparrow , PGI₂ \uparrow
 - ⇒ Protection post Exercise
 after 1h still 75% Protection from EIB
 after 2h 50% Protection
 after 4h 0% Protection
- Prevention → prolonged "Warming Up" > 10-15"

Intervall 45%/90% VO₂max

Steigerung 30% → 70% VO₂max

Aerobic $50\% \rightarrow 70\% \text{ VO}_2\text{max}$

Walking 45% VO₂max

Exercise-Induced Bronchoconstriction (EIB)

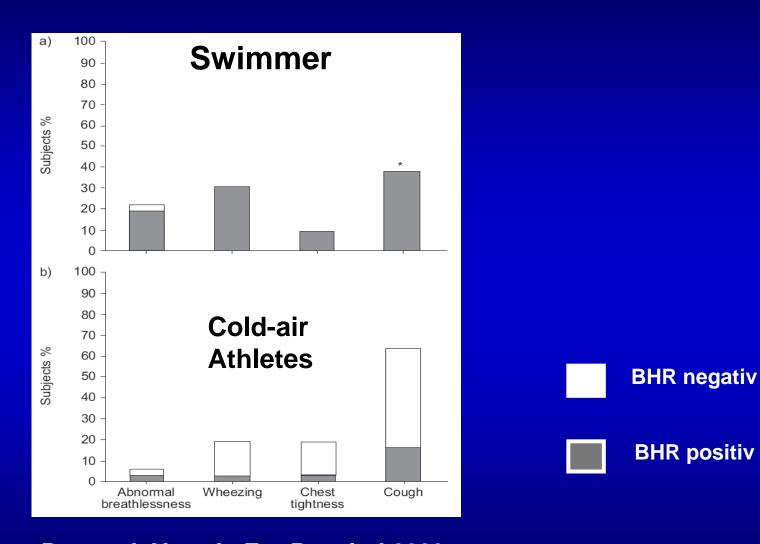
Definition: Temporary Bronchoconstriction during/after

Intense Physical Activity

Complaints: Symptoms: 6-8' after start of exercise

Dry cough (during/after Exercise), for hours!

Dyspnoe without Wheezing


Chest Tightness

Decrease in Performance

Wheezing (exspiratory)

Are Respiratory Symptoms allways caused by BHR

Bougault V et al.: Eur Respir J 2009

Diagnostic Procedures for EIB "Specific" Tests

- Spirometry:
 - ⇒ Reversibility FEV1 = >12% (Salbutamol)
 - ⇒ FEV1 Instability (?)
- Exercise Test for EIB
 - ⇒ Defined Exercise-Test on Tretmill/Bike
- BHR
 - ⇒ Methacholine-Test, Mannitol-Test, Hypertonic NaCl-Test, eucapnic Hyperventilation-Test

Therapy of EIB (1)

no Sports

- Unstable "untreated" Asthma
- Cold Temperature (< -18°): in Combination with intense Hyperpnoe **Induction of Inflammation with BHR**

Refractory Period

- extended Warming Up (>15') with
- slow increase in Intensity
- Intervalls

Sporadic EIB:

 β_2 -Agonist (DoU,TUE) • Short Acting β 2 (SABA): 15' before Exercise

Parasympatolytics

 Tiotropium (Spiriva)/Ipratropium (Atrovent): 60' before Exercise

(less effective!)
Beat Villiger: 1. Sports Medicine Seminar KHL - Asthma in Icehockey

Therapy of EIB (2)

1. Asthma bronchiale

Basic: ICS: Budesonid et al (DoU)

ev plus LTRA (Montelukast et al)

on demand: prophylactic: 15' before Exercise / Rescuemed.

SABA: Type Salbutamol et al(DoU,TUE)

LABA: Formoterol (TUE), Salmeterol (DoU)

falls Dauertherapie notwendig:

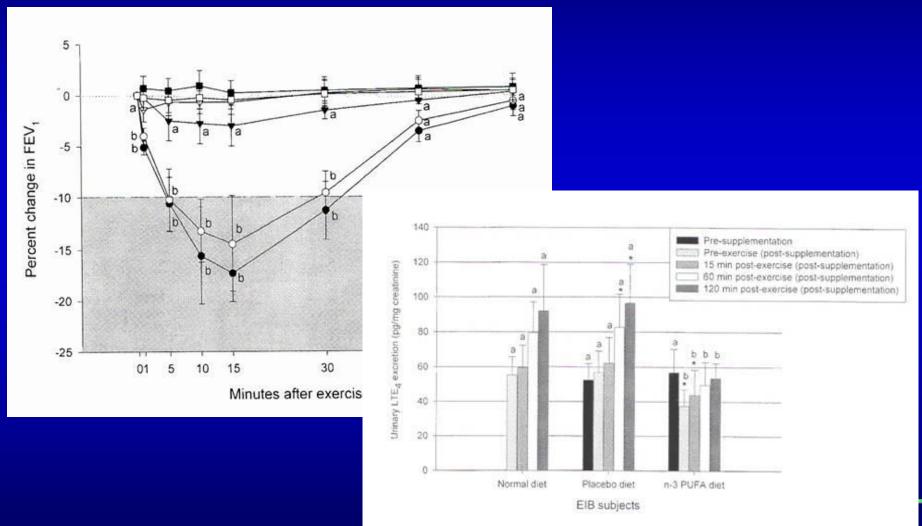
Kombinationen (Symbicort/Seretide (TUE) oder

LTRA/LABA (TUE)

2. "Sportl-induced"

intermittend: prophylactic: 15' before Exercise mit SABA

rezidivierend: LTRA (Montelukast) ev. in Combination with


ICS and Beta2

Prevention: Omega 3 FS (500mg, q 12h)

Fish Oil (Omega 3 FS) Supplementation reduces Severity of Exercise Induced Bronchoobstuction in Elite Athletes

T.D. Mickleborough, R.L. Murray, A.A. Ionescu, M.R. Lindley, ADRCCM, 168, 1181-1189 (2003)

Take Home Message (1)

EIB in	Asthma	"Sport-induced" Asthma
Hx Asthma	+	_
Hx Allergy	+/-	-
Inflammation	Eosinophils	Neutrophils
"Key"-Symptoms	Wheezing	Dry Cough
	Dyspnoe	Chest Tightness
	Scating through	h Scating through
BHR	Methacholine	Exercise-/EHV Test
Therapy	ICS > LRA	ICS = LRA (?)
Prevention	SA Beta 2 ++	+ SA Beta 2 +++
	Omega 3 +/	/- Omega 3 +++
Нх	lifelong	3 yrs after career < 3%

Take Home Message (2)

Yes!
EIB is in Ice Hockey
still Under Diagnosed

If not at least 15% of your Ice Hockey Players are treated for an Exercise-Induced Bronchoconstriction (EIB)......

Your Team will not perform optimally !!!!!

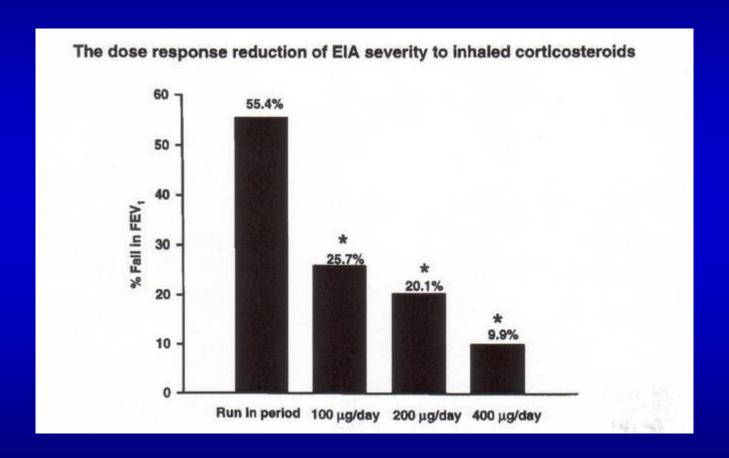
Do you want that?

Thanks for your attention!

Beat Villiger, MD, CEO SPC Swiss Paraplegic Center 6207 Nottwil/Switzerland

Phone +41 41 939 55 51

Fax +41 41 939 55 57


E-Mail beat.villiger@paranet.ch

Internet www.paranet.ch

Therapy of EIB in Asthma bronchiale

S.A. Anderson: Effect of Budesonid on EIA in Asthmatics JACI 1995: 95,29-33

Effect of Montelukast (Singulair) on EIB

Leff JA et al. NEJM 1998

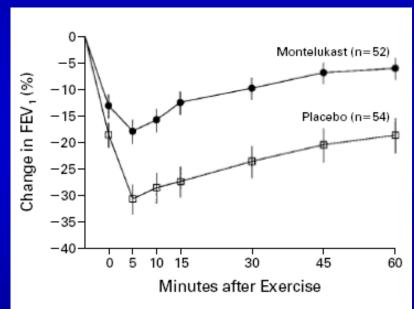
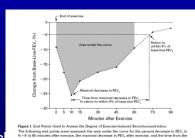



Figure 2. Mean (±SE) Changes in FEV₁ after Exercise Challenge after 12 Weeks of Treatment with Montelukast or Placebo.

Treatment with montelukast was associated with a significant (P=0.002) reduction in exercise-induced bronchoconstriction.

